Autonomous Navigation to The Goal In
Grid: Dynamic Programming

Zhuoqun Chen
Dept. Electrical and Computer Engineering
UC San Diego
La Jolla, USA
zhc057 @ucsd.edu

Abstract—This report focuses on solving a discrete
autonomous navigation problem in the MiniGrid En-
vironment settings. By formulating the problem as
a Deterministic Optimal Control(DOC) Problem, we
solves it with Dynamic Programming(DP) Algorithm.
To show the effectiveness of DP algorithm, we tested it
in both known environments(a collection of 5x5, 6x6
and 8x8 grids with different settings) and random
environments of 8x8 grid size where the key and the
goal’s position can be randomly sampled from a finite
discrete set of tuples. We presented the experiment
results and conclude the report in the end.

Index Terms—Deterministic Optimal
Control(DOC) , Deterministic Shortest Path(DSP),
Dynamic Programming(DP), MiniGrid Environment,
OpenAl Gym

I. INTRODUCTION

Deterministic Optimal Control (DOC) techniques
can be effectively applied in various robotics sce-
narios to achieve optimal performance and decision-
making. For an instance, DOC related algorithms
can be utilized in autonomous navigation systems
to enable robots to plan optimal paths and make
informed decisions. By modeling the environment
and robot dynamics, the optimal control problem
can be formulated to find the trajectory that mini-
mizes a cost function, such as travel time or energy
consumption, while avoiding obstacles and adhering
to motion constraints. This allows robots to navigate
efficiently in complex environments.

When the world environment can be viewed as
discrete where the agent state space and control
space are discrete and finite, DOC Problem can
be solved by Dynamic Programming algorithms[1],
for example see fig. 1. Under the same settings,

some researchers also construct the world as a
graph and formulate the problem as a Deterministic
Shortest Path Problem. The equivalence of these
two problems can be proved by constructing a graph
representation of the DOC Problem.

In this report, we mainly focus on how to find
a path with minimum cost for agents that lives
in a grid world environment by leveraging Dy-
namic Programming algorithm, where the agent’s
movement is bounded in a finite size of grid with
unreachable obstacles around. The agent can take
several discrete actions(control input) to navigate
in the grid to the final goal with finite horizon.
The robot can unlock the door first while holding
a key in his hand if the locked door is in the
path that stops him to the final goal position. We
organize the report in the following orders: In the
first section, we give a brief introduction and we
then formulate the problem in the second section.
Then we present our technical approach in the third
section and finally showed our experiment results,
analysis and conclusion in the following sections.

II. PROBLEM FORMULATION

Our door-key problem is based on the Determin-
istic Markov Decision Process(MDP) assumption
with discrete and finite state space so we firstly
introduce MDP.

A. Markov Decision Process

Markov Decision Process(MDP) with con-
trolled tuple is defined as an ordered tuple
(X, U, xo, f,T,4,q,7), where X is a discrete state

[]

Fig. 1. Known DoorKey 6x6 Normal Environment Example:
The agent(red triangle) desires to find a path to a known goal
position(green square). The Black cells are traversable and free,
so agent can go to that cell given action labeled "Move Forward’.
And the grey cells are the walls that the agent can’t go into. If
the door in front of the agent is locked, the agent need to unlock
it first with the key. The goal for the agent is to find a path with
the lowest cost to get to the goal.

space, U is a discrete control space, xg is an initial
state defined on X, f is a deterministic motion
model or transition function defined on X that given
xy € X, up €U, 2441 18 given by zpy1 = [z, ur).

B. Deterministic Optimal Control(DOC) Problem

With the above MDP assumption, we define the
Deterministic Optimal Control(DOC) Problem as
the following.

Given x¢ € X, our goal is to construct an optimal
control sequence ug.7—1 such that:

minuO:T—l q (XT) + Z’f:iol 14 (Xta U—t)
S.t. Xt+1:f(Xt,ut),tZO,...,T—l
Xt € X,ut EM(xt),
There are many algorithms that can be designed
to solve DOC problem and we will discuss about

solving this problem with Dynamic Programming
algorithm in the next section.[2]

III. TECHNICAL APPROACH

A. State Space Design

We define the state space X to be a Cartesian
product of some observable sets in the grid world
settings:

agent position x
agent orientation x
agent holding key indicator x
door(s) status indicator x
key position(optional) x
goal position(optional)

ey

1) State Space for Part A: Based on eq. (1),
in Part A, we don’t need to provide those two
optional parts as the state of the agent in the
grid because we are allowed to run the algorithm
multiple times so such information can be ruled out
from our state design. And we implement above in
our implementation by grouping all the info into
a dictionary variable. We represent the key status
as that current agent is with key(w) or without
key(wo) and the door status as that the door in
the environment is open(o) or closed(c). We also
encode the orientation of the agent to be one of the
following status: up, down, left, right

2) State Space for Part B: As Part B require-
ment points out, the main difference of this part
is to compute a single policy that can solve all
36 environment variations. So we need to add the
optional part in eq. (1) of the state space design.
Later we also need to fine-tune the motion model
logic to encode the environment-specific random
observations into the agent state.

According to the requirement, we already know
all the layouts of the grids except that the
positions of the keys and the goals are ran-
domly selected in set {(1,1),(2,3),(1,6)} and set
{(5,1),(6,3),(5,6)}, respectively. So on top of
the design in Part A, now we also incorporate
this two pieces of information into the agent state.
It is also reasonable to enlarge the cardinality of
the dimension the door status observation because
there are two doors now in the environment so the
cardinality of the door status indicator will be 4:

door status indicator = {o-c,c-0,0-0,c-c} (2)

where ¢ encodes closed and o encodes open.

B. Stage Cost and Terminal Cost Design

We designed a simple yet effetient stage cost
function and terminal cost function to help our agent
to find a path with minimum path in the grid world
settings:

stage cost is designed as:

(%, 1) = 0 Xpos :.goal position 3)
1 otherwise
stage cost is designed as:
0 Xpos = goal position
q(xt) = .)
oo otherwise
C. Time Horizon Design
We design the time horizon to be:
T=|X-1 (5)

D. Discounted Factor Design

For finite horizon steps, we design the discounted
factor v = 1.

E. Motion Model(Transition Function)

A key design for applying DP algorithm in the
door-key problem settings is to define the motion
model. For most of the case, the agent’s state old
state won’t transition to new state, i.e., the state re-
mains the same for most of the case, for example in
the position part in the state, if the agent’s position
is inside the cell where the wall is, then such state
is an absorption state that will never be transition to
other state. That’s why in the implementation, the
motion model for most cases only consider special
cases and whether such conditions have been met.

And the transition function is also the biggest
difference between Part A and Part B. In Part A,
we only need to consider some low dimensional
cases, for example, when the agent is holding the
key action and the action is "UD”, if at that time
there’s a door in front of itself, then the agent only
need to judge whether the door is open and if it’s
locked, then the door’s status will transit to open
and that’s it. However, in Part B there are 2 doors’
status, and each one can be open or closed, in this

case, when encoutering the same situation, the agent
needs to decide to update which door’s status when
holding the key in front of a locked door, which will
largely expands the dimension of the search space.
In summary, we just enumerate all the possible
situations where the designed state may transition,
the leave the other states to be unchanged, this is
how we defined our motion model f. And this is one
advantage of leveraging Dynamic Programming in
the grid world because we have all the observations
and we know every possible combination about
how old states will transition to new states(perfect
privileged information about the world model).

F. Dynamic Programming algorithm used for solv-
ing DOC

We have all the components in our MDP, know
we can leverage Dynamic Programming to solve
our door-key grid environment.

Algorithm 1 Dynamic Programming on DOC
Input: MDP (Xa u7p07pf7 T7 év q, ’Y)
Input: determined transition x;1 = f(y, ut)

Ly=1

2: |X] < oo and U| < o0

3 Vr(x) =q(x), VxelX

4: fort =T —1to 0 do

5 Qulxou) = (x,u) + Vi (f(x,0))

6: Vi(x) = mingey(x) Qe(x,u), Vxe X
7. m(x) = argminQ:(x,u), Vxe X

u€cld(x)
end for
9: return policy my.7—1 and value function V)

®

In practice, we also set early termination condi-
tion for certain time step where the value function
keeps unchanged for all the states.

By using above designed Dynamic Programming,
we can solve the door-key grid problem.

G. The equivalence with Deterministic Shortest
Path Problem(DSP)

Based on different formulation, the deterministics
optimal control problem can also be solved by
firstly reformulating it to be a deterministic shortest
path problem on a graph can then leverage other
graph-search based algorithm to solve it. Because

in this report we mainly focus on how to leverage
Dynamic Programming algorithm by formulating
the DOC problem, so we won’t discuss too much
about this equivalence, more proofs and details can
be found in Professor’s lectures.

IV. EXPERIMENT RESULTS

In the above section, we give our dynamic pro-
gramming algorithm as section III-F. In this section,
we present the effectiveness of solving the Grid
World problem by using Dynamic Programming.

Specifically, we tested the DP algorithm in a Min-
iGrid Environment that implements the OpenAl’s
gym APIL. And in our experiment, we didn’t directly
use the internal implementation, instead, we left the
observation term untouched and defined our own
motion model and the associated stage cost of each
step.

Here are the results for using Dynamic Program-
ming Algorithm both in known environments and
in random environments.

A. Part A

1) doorkey-5x5-normal.env: The results for solv-
ing doorkey-5x5-normal can be seen from fig. 2

Fig. 2. doorkey-5x5-normal

The optimal control sequency is: ['TL’, 'TL,
PK’, ’TR’, "UD’, '"MF’, "MF’, "TR’, "MF’]

2) doorkey-6x6-normal.env: The results for solv-
ing doorkey-6x6-normal can be seen from fig. 3

The optimal control sequency is: ['TL, "MF’,
'PK’, °TL, "MF’, °'TR’, UD’, "MF’, '"MF’, "TR’,
"MF’]

3) doorkey-6x6-direct.env: The results for solv-
ing doorkey-6x6-direct can be seen from fig. 4

The optimal control sequency is: 'MF’, "MF’,
"TR’, "MF’, "MF’]

Fig. 4. doorkey-6x6-direct

4) doorkey-6x6-shortcut.env: The results for
solving doorkey-6x6-shortcut can be seen from
fig. 5

Fig. 5. doorkey-6x6-shortcut

The optimal control sequency is: ['PK’, *TL’,
T, "UD’, "MF’, "MF’]

5) doorkey-8x8-normal.env: The results for solv-
ing doorkey-8x8-normal can be seen from fig. 6

The optimal control sequency is: ['TR’, "MF’,
T, "MF’, °'TR’, "MF’, "MF’, "MF’, "PK’, "TL,
L, "MF’, "]MF’, "MF’, "TR’, "UD’, "MF’, "MF’,
'MF’TR’, "MF’, "MF’, "MF’].

Fig. 6. doorkey-8x8-normal

6) doorkey-8x8-direct.env: The results for solv-
ing doorkey-8x8-direct can be seen from fig. 7

Fig. 7. doorkey-8x8-direct

The optimal control sequency is: [[MF’, "TL,
"MF’, "MF’, "MF’, "TL’, "MF’]

7) doorkey-8x8-shortcut.env: The results for
solving doorkey-8x8-shortcut can be seen from
fig. 8.

The optimal control sequency is: ['TR’, "MF’,
"TR’, ’PK’, °'TL, *UD’, '"MF’, "MF’].

B. Part B

In Part B’s setting, the environment is randomly
generated from all 36 possible environments, so we
randomly initiated the slover for several times and
collected the optimal control sequencies along their
according trajectories. And the other observation is

Fig. 8. doorkey-8x8-shortcut

that all the grid size is 8x8 and there are only a
few wall cells in the fixed positions, so the overall
search time is way much longer than in Part A.

1) Trial 1: In Trial 1, DoorKey-8x8-23 is se-
lected as the environment.

The randomly generated key position is at (2, 3),
and the goal position is at (5, 6).

It took 7.33s to get to the optimal policy.

The optimal control sequency is: ['TR’, "MF’,
'MF’, °'TR’, "MF’], , see fig. 9.

The according gif result is presented in the at-
tached results folder.

2) Trial 2: In Trial 2, DoorKey-8x8-18 is se-
lected as the environment.

The randomly generated key position is at (2, 3),
and the goal position is at (6, 3).

It took 7.10s to get to the optimal policy.

The optimal control sequency is: ['MF’, "MF’,
"MF’, "TR’, "MF’, "MF’, "MF’, 'TR’, "MF’], see

B B
? ?

Fig. 9. Trial 1: DoorKey-8x8-23 Fig. 11. Trial 3: DoorKey-8x8-16

|
?

T, °PK’, "'TR’, "MF’, "TR’, "UD’, "MF’, "MF’,
T, "MF’], see fig. 11.

The according gif result is presented in the at-
tached results folder.

4) Trial 4: In Trial 4, DoorKey-8x8-13 is se-
lected as the environment.

The randomly generated key position is at (2, 3),
and the goal position is at (5,1).

Fig. 10. Trial 2: DoorKey-8x8-18

fig. 10.

The according gif result is presented in the at-
tached results folder.

3) Trial 3: In Trial 3, DoorKey-8x8-16 is se-
lected as the environment.

The randomly generated key position is at (2, 3),
and the goal position is at (5, 1).

It took 8.57s to get to the optimal policy.
The optimal control sequency is: ['MF’, "MF’, Fig. 12. Trial 4: DoorKey-8x8-13

It took 6.6s to get to the optimal policy.

The optimal control sequency is: [MF’, "MF’,
'MF’, "TR’, "MF’, "MF’, °'TL’, "MF’], see fig. 12.

The according gif result is presented in the at-
tached results folder.

5) Trial 5: In Trial 5, DoorKey-8x8-26 is se-
lected as the environment.

The randomly generated key position is at (1,6),
and the goal position is at (5, 1).

Fig. 13. Trial 5: DoorKey-8x8-26

It took 7.04s to get to the optimal policy. The
optimal control sequency is: [MF’, "MF’, "MF’,
"TR’, "MF’, "MF’, "TL’, "MF’], see fig. 13. The
according gif result is presented in the attached
results folder.

ACKNOWLEDGMENT

Thanks Prof. Nicolay for such meaningful lec-
tures and the commitment of TA Zhirui Dai.

REFERENCES

[1] D. P. Bertsekas, Dynamic Programming and
Optimal Control, 3rd. Belmont, MA, USA:
Athena Scientific, 2005, vol. 1.

[2] N. Atanasov, Lecture pdfs and course website
resources, 2023.

	Introduction
	Problem Formulation
	Markov Decision Process
	Deterministic Optimal Control(DOC) Problem

	Technical Approach
	State Space Design
	State Space for Part A
	State Space for Part B

	Stage Cost and Terminal Cost Design
	Time Horizon Design
	Discounted Factor Design
	Motion Model(Transition Function)
	Dynamic Programming algorithm used for solving DOC
	The equivalence with Deterministic Shortest Path Problem(DSP)

	Experiment Results
	Part A
	doorkey-5x5-normal.env
	doorkey-6x6-normal.env
	doorkey-6x6-direct.env
	doorkey-6x6-shortcut.env
	doorkey-8x8-normal.env
	doorkey-8x8-direct.env
	doorkey-8x8-shortcut.env

	Part B
	Trial 1
	Trial 2
	Trial 3
	Trial 4
	Trial 5

