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Abstract—This report focus on comparing the per-
formance of search-based and sampling-based motion
planning algorithms in 3D Euclidean Space with
obstacles. By formulating the Motion Planning Prob-
lem and its sub-problems that is suitable for our
environment settings, we solved it with search-based
Weighted A* and sampling-based RRT Algorithm. To
show the effectiveness of the algorithms, we tested it
7 environments with different layouts. We presented
the experiment results and conclude the report in the
end.

Index Terms—Motion Planning, Search-based Path
Planning, Sampling-based Path Planning, Weighted
A*, Rapidly-exploring Random Trees(RRT)

I. INTRODUCTION

Motion planning is a fundamental problem in
robotics and autonomous systems, which involves
determining a feasible path for a robot or agent to
navigate from a start to a goal configuration while
avoiding obstacles in its environment. This problem
is crucial in various scenarios, such as autonomous
vehicles, industrial automation, and mobile robotics.
To tackle this challenge, search-based path plan-
ning algorithms and sampling-based path planning
algorithms have emerged as powerful techniques.
Search-based algorithms, such as A* and Dijkstra’s
algorithm, explore a discrete search space to find an
optimal or near-optimal path. On the other hand,
sampling-based algorithms, like Rapidly-exploring
Random Trees (RRT) and Probabilistic Roadmaps
(PRM), construct a roadmap or a tree of feasible
configurations by randomly sampling the configu-
ration space. These algorithms enable efficient and

robust path planning in different scenarios, offering
versatile solutions to the motion planning problem.

In this report, we mainly focus on comparing the
performance of search-based and sampling-based
motion planning algorithms in 3D Euclidean Space
with obstacles. The organization of this report is
as following: We formulate the motion planning
problem in section II, then we give our performance
analysis of different algorithms in section III, then
we did some experiments to show the effectiveness
our implemented algorithms in section IV. At the
end of the report, we also appended some techni-
cal solutions and experiment debugging logs that
helped us to improve the robustness of our self-
implemented path planning algorithms.

II. PROBLEM FORMULATION

Generally speaking, given a robot with its dy-
namics, a configuration space C built on top of an
environment with obstacles, an initial state of the
robot xs, a goal state xτ , the Motion Planning
Problem in (Cfree,xs,xτ ) is to find a sequence of
valid configurations that robot can move from xs to
xτ . In our settings, the robot is treated as a point in
R3 without Kinodynamic constrains that moves in-
side a regular Axis-Aligned Bounding Box(AABB)
with also AABB obstacles, thus our problem can be
natually converted to a Path Planning Problem in
R3. In many cases, the dimension of the problem is
very high so it’s not always possible to develop a
complete algorithm that terminates in finite time[1].
Thus for a Path Planning Problem, for different type
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Fig. 1. Flappy Bird Environment Example: The goal is to plan a
3D collision-free path from the start(red) to the goal(green). The
boundary box is the overall limited configuration space in R3.
The colorful blocks in the middle are the obstacles and any line
segment along the planned path cannot have intersection within
those space. The complementary free space is the area that is
not covered by obstacles within the boundaries.

of algorithms, the original problem can be divided
into two sub-problems:

A. Feasible Path Planning Problem

We formulate a Feasible Path Planning Prob-
lem as the following: given a path planning problem
(Cfree,xs,xτ ), find a feasible path ρ : [0, 1] →
Cfree such that ρ(0) = xs and ρ(1) = xτ if one
exists. If there is no such path, report failure.

Many Sampling-based planning algorithms can
be used to solve this sub-problem and provide some
theoretical guarantees and we will talk about more
details in section III-F.

B. Optimal Path Planning Problem

If we associate a cost function J : P → R≥0

with a feasible path ρ∗, then we can formulate a
Optimal Path Planning Problem: given a path
planning problem (Cfree,xs,xτ ) and a cost func-
tion J : P → R≥0, find a feasible path ρ∗ such
that:

J (ρ∗) = min
ρ∈Ps,τ

J(ρ) (1)

Sampling-based algorithms are not suitable for
directly finding such path in eq. (1) because the
randomness of the steer distance when sampling
new nodes xrand. However, many Search-based
planning algorithms can be used to solve such
problem because the planning usually operates on
undirected uniform-cost grid. We will talk about
more details from the algorithm side including how
we design the control space U for 3D scenario in
section III-E.

In later sections, we focus more on the details and
algorithms developed to solve the above feasible
path planning problem and optimal path planning
problem.

III. TECHNICAL APPROACH

A. Framework Design

We designed our software pipeline as in Fig-
ure 2. Search-based planners and Sampling-based
planners are at the same level of abstraction and
implment the plan or search path API.

B. Collision Detection Design

Implementing a 3D collision checker is critical
for finding a shortest path in 3D Euclidean space
with obstacles. Without collision detection during
the planning in each step, we won’t be able to tell
which children nodes shouldn’t be expanded and
may eventually end up with an unusable planned
path in real-world applications. In our problem, the
obstacles are a set of rectangular blocks specified by
lower-left corner (xmin, ymin, zmin) and upper-right
corner (xmax, ymax, zmax).

1) 3D Line-AABB Collision Detection: There are
many possible configurations for a directed line
segment −−→v0v1 specified by start point v0 and end
point v1 and an Axis-Aligned Bounding Box(AABB)
denoted as B in R3 can be placed, an example can
be found in Figure 3.

And from Figure 3, we can deduct some common
rules to check whether a line −−→v0v1 and an AABB
B will collide:

• −−→v0v1 collides with B if v0 or v1 is within B
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Fig. 2. An illustration of our pipeline: given the environment
read from the map and the positions of the start and the
goal point, we can specify to use search-based algorithms or
sampling-based algorithms to plan a 3D collision-free path, for
sampling-based algorithms, we use the APIs provided by [2].
Collision Checker will be used in search-based algorithms to
ensure only feasible children nodes and paths given by any
algorithm will be double-checked whether it’s collsision-free.
More details can be found in Section III-B.
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Fig. 3. Different scenarios of a directed line segment and an
AABB in Euclidean Space: (a) the viewpoint(x-axis pointing
right, y-axis pointing inside, z-axis up) of seeing a layout of a
directed line segment and an AABB, and when projected onto
the x-y 2D plane, there are 3 possible cases: (b) line −−→v0v1
intersects the bottom plane on a point outside the box (c) line
−−→v0v1 intersects the left plane on a point outside the box

• −−→v0v1 collides with B if the intersection be-
tween −−→v0v1 and any plane E2 of B is within
B

The above rules assume that any plane extends
to infinity and is represented as Hessian Normal
Form[3]:

n · x = −p (2)

where n is the face normal vector of the plane and
p is the distance of the origin to the plane(p is
positive if origin is located in the same side of n and
the opposite side otherwise). Thus the point-plane
distance can be easily calculated as:

D(x0,E
2) = n · x0 + p (3)

Positive distance D indicates that the queried point
x0 lives in the same side of n and the opposite side
otherwise.

Equation (3) can be used to determine whether a
line will collide with a plane (Algorithm 1):

Algorithm 1 3D Line-Plane Intersection Detection
Input: Line −−→v0v1 (vector v)
Input: Plane E2 with n and p
Output: intersection indicator and intersection

point if there is
1: denominator = n · x
2: if denominator = 0 then
3: if D(x0,E

2) = 0 then
4: return True, v0
5: end if
6: return False, None
7: end if
8: t = −(n · v0 + p)/denominator
9: if t < 0 or t > 1 then

10: return False, None
11: end if
12: intersection point = v0 + t · x
13: return True, intersection point

We present our 3D Line-Plane Collision Detec-
tion algorithm as Algorithm 2:

Notice that we also need to check whether a
line segment will collide with an additional AABB
consists of the rectangular boundaries.



Algorithm 2 3D Line-AABB Collision Detection
Input: Line −−→v0v1 (vector v)
Input: AABB B with 6 planes: left, front, bottom,

right, back, top
Output: collision indicator and collision point if

there is
1: if v0 ∈ B then
2: return True, v0
3: else if v1 ∈ B then
4: return True, v1
5: end if
6: for each plane E2 ∈ B do
7: intersects, point = Algorithm 1

(−−→v0v1,E2
)

8: if intersects = True then
9: if point ∈ B then

10: return True, point
11: end if
12: end if
13: end for
14: return False, None

2) 3D Path Collision Detection: With Algo-
rithm 2, we can then give our 3D Path Collision De-
tection algorithm (see Algorithm 3), this algorithm
will be executed everytime the planner has given a
path to double check(especially in sampling-based
algorithms because the validness of newly added
edges is checked inside the library itself) that every
line segment along the path is collision free.

The Path Collision Detection Algorithm will
check the paths returned by both search-based and
sampling-based planners.

C. Pruning Successors
D. Additional Techniques to Improve Robustness of
Path Finding Algorithms

Notice that this section is better be placed at Ap-
pendix section as an experiment log of debugging.

1) Early Termination When Open Set Is Empty:

2) Line and AABB Box Collision Checker Filter
out Unreachable Children:

E. Search-based Planning Algorithms
Search-based planning algorithms are suitable for

solving Optimal Path Planning Problem(eq. (1))

Algorithm 3 3D Path Collision Free Detection
Input: a path p in R3

Input: boundary box V and obstacle AABBs
{B1, B2, · · · , Bm}

Output: collision-free indicator
1: for each line −−→v0v1 in p do
2: for each Bi ∈ {B1, B2, · · · , Bm} do
3: if v0 /∈ V or v1 /∈ V then
4: return False
5: end if
6: intersects, point = Algorithm 2 (−−→v0v1, Bi)

7: if intersects = True then
8: return False
9: end if

10: end for
11: end for
12: return True

when we discretize the continuous 3D Euclidean
Space as a collection of 3D grids with the same
grid size specified by resolution. Then we construct
a graph representation of the 3D grids and calculate
the costs between two nodes i and j and convert
the problem into a Deterministic Shortest Path
Problem(DSP) and use label correction algorithms
to solve it(no negative cycles). In our settings, we
select resolution = 0.5 to discretize the configura-
tion space C and use L2-norm to represent the true
cost between two nodes. In the following discus-
sion, we mainly talk about the implementation and
theoretical analysis of Weighted A∗ algorithm.

1) Control Input for 3D Grids: We can see from
Figure 4 that for each descretized state x during
planning, there are 26 control inputs in total can be
selected to go to the next potential children nodes
and each one can be encoded into a discretized
steering direction dR:

dR = {i, j, k} (4)

where i, j, k ∈ {−1, 0, 1} and |i| + |j| + |k| ̸= 0
because we don’t allow the next state to be the
the same as current state. Thus the next state x′

determined by the transition function f(x,u) can



be written as:

x′ = f(x,u) = x+ dR · resolution (5)

If we interpolate the notation and view current state
as current note i on graph G, next state x′ as its
child node j, then the stage cost(edge cost) is:

cij = l(x, f(x,u)) = ∥dR∥2 · resolution (6)

And ∥dR∥2 can be one of the value in
{D1, D2, D3} where D1 = 1, D2 =

√
2 and

D3 =
√
3. Notice that the cost defined above

indicates undirected uniform-cost grid, where the
cost l(x,u) is only determined by the control input
no matter what the state x is. This assumption
will also allow us to develop Jump Point Search
Algorithm to solve the problem.

Norm 3 

Norm 1 

Norm 2 

Fig. 4. An overview of 26 possible actions for a descretized
state x during planning: state x correspondes to the red grid
in the center of the middle layer, orange grid indicates Norm-
1 action with cost D1(6 in total), blue grid indicates Norm-2
action with cost D2(12 in total), green grid indicates Norm-3
action with cost D3(8 in total)(for simplicity, we can assume
resolution = 1).

2) Weighted A∗ Algorithm: The Weighted A∗

Algorithm can be seen in Algorithm 4. And in
practice, we implement the OPEN list as an priority
queue where the key is stored as the discretized
3D grid index converted from the coordinate of the
node and the value is fi = gi + ϵhi. During each
iteration, the node i with the minimal f value will
be poped from OPEN list and marked as CLOSED.
Then we try to correct the labels of valid children
nodes of i. Notice that we call valid children nodes
if they have been filtered by algorithm 1 where
the input line is −−→vivj and we iterate over all the
obstacle AABBs {B1, B2, · · · , Bm} specified by
the environment.

Algorithm 4 Weighted A∗ Planning
1: OPEN ← {s}, CLOSED ← {}, ϵ ≥ 1
2: gs = 0, gi =∞ for all i ∈ V \ {s}
3: while τ /∈ CLOSED do
4: Pop i with min fi := gi + ϵhi from OPEN
5: Insert i into CLOSED
6: for j ∈ Children(i) and j /∈ CLOSED do
7: if gj > (gi + cij) then
8: gj ← (gi + cij)
9: Parent(j)← i

10: if j ∈ OPEN then
11: Update priority of j
12: else
13: OPEN ← OPEN ∪{∪}
14: end if
15: end if
16: end for
17: end while
18: return path if there is or None if time out

3) The choice of Heuristic Functions: A heuris-
tic function is consistent if it satisfies the triangle
inequality:

hi ≤ cij + hj for all i ̸= τ and j ∈ Children(i)
(7)

and also hτ = 0.
For our search-based planning on a 3D grid

environment settings, both 3D Euclidean distance
and 3D Diagonal distance are consistent heuristic
functions when ϵ = 1. And we tried both in our ex-
periments, more details are discussed in section IV.

3DEuclideandistance : hi = ∥xτ − xi∥2 (8)

4) Optimality and Completeness Analysis of
Weighted A∗: Compared to A∗ Algorithm, because
Weighted A∗ uses an ϵ− consistent heuristic, thus
only an ϵ− optimal path with cost:

dist(s, τ) ≤ gτ ≤ ϵ · dist(s, τ) (9)

will be returned in the end. However, the com-
pleteness of the algorithm is guaranteed(finite time
convergence assuming a finite graph). Thus ϵ is a
trade-off factor between optimality and searching
speed.



5) Time and Memory Complexity Analysis:
We analyze the complexity of the A∗ Algo-
rithm assuming that we use Binary heap, e.g.,
boost::heap::d ary heap in C++. Given a graph G
with number of nodes |V|, number of edges |ϵ|, the
time complexity is:

O((|E|+ |V|) log |V|) (10)

As for the memory complexity, A∗ does min-
imum number of expansions O(|V|), however,
this require an infeasible amount of memory, and
Weighted A∗ are often but not always better[4].

6) Scale Up When Extending to Larger Map:
The efficiency of Weighted A∗ Algorithm is largely
affected by the selection of ϵ in different layouts of
the environments because this value determines how
much the planner is biased towards states closor to
the goal by calculating

fi = gi + ϵhi with ϵ ≥ 1 (11)

For our current python implementation, the grid-
size is fixed, if there are large and dense obstacles
between the start point and the goal point, in
such environments like monza or flappy bird, the
planning time is a little bit longer. One possible
solution is to use grid with different levels of
sparsity. For wide and collision-free area, we use
larger grid-size and when the obstacles are dense in
the area, we shrink the grid-size. Another solution
is to implement C++ version of the algorithm and
use better underlying data structure to implement
the priority queue.

When ϵ = 1, the Weighted A∗ algorithm will be
reduced to regular A∗ algorithm.

In our experiment, when ϵ = 1.0, the total
expanded nodes are 111 for single cube environ-
ment, however, when we increase ϵ to 1.1, the total
expanded nodes are reduced to 11 for the same
environment using the same heuristic function.

F. Sampling-based Planning Algorithms

Basically in our settings, for sampling-based
planning in 3D, the cost of the path can also
be calculated by summing over the length of line
segments along the path. But unlike maintaining an
open list, the tree is expanded randomly in Cfree.

Thus we have no way to evaluate the optimality
of a found feasible path at termination, this is why
we develop sampling-based algorithms mainly to
solve the Feasible Path Planning Problem described
in section II-A.

1) Rapidly Exploring Tree(RRT) Algorithm:
Rapidly Exploring Tree(RRT) is one of the most
popular planning techniques and has many versions
of variants when adding kinodynamic constrains.
We mainly focus on exploring the original algo-
rithm to get a better understanding of the basic con-
cepts of sampling-based path planning. We present
the original RRT algorithm in Algorithm 5.

Algorithm 5 3D RRT
1: for i = 1 . . . n do
2: xrand ← SAMPLEFREE()
3: xnearest ← NEAREST ((V,E),xrand )
4: xnew ← STEERϵ (xnearest ,xrand )
5: if CollisionFREE (xnearest ,xnew ) then
6: V ← V ∪ {xnew }
7: E ← E ∪ {(xnearest , xnew )}
8: end if
9: end for

10: return G=(V, E)

2) Tunable Parameters of RRT: There are 4
tunable parameters when using RRT algorithm in
rrt-algorithms library: length of tree edges Q,
maximum number of samples before termination
max samples, length of smallest edge to check
for intersection with obstacles r and probability of
checking for a connection to goal prc. In our later
on experiment results, we found that the Q value
is very important and a key factor when there are
many obstacles between the start and the goal point.
For the algorithm can always return a feasible path,
we maully fix the max samples to a very large
number to ensure probabilistically completeness.
Then for the parameter r, it will steer a small
distance towards the xrand from xnearest if there
is an obstacle within them, if the collision is still
detected, nothing will be connected to the tree and
we will continue to generate a new sample in the
configuration space.



3) Addition Effort to Use the Third-Party API
for Our Settings: We used a third-party of python
implementation of RRT-based Algorithms called
rrt-examples[2]. And we used the original RRTBase
Algorithm in the package and tuned its parameters
specified above to find feasible path in our 3D envi-
ronment settings. We converted the start point and
goal point to tuple, converted the boundaries to a 2-
D numpy array, only use the first 6 columns of the
blocks(the other 3 dimensions are used to specify
block colors). Later on when plotting, we also add a
second 3D axis to plot the tree itself and add some
additional labels to help get a better visualization of
the metrics that can show the effectiveness of the
algorithm. We also colorized the blocks for better
effect.

G. Comparison between Search-based planners
and Sampling-based planners

From previous discussion, search-based algo-
rithms will provides finite-time sub-optimality
bounds on the solution and guarantes to find a
feasible path if it exists in the 3D grid environment
settings thus they are resolution complete. How-
ever, the problem is that when the problem has
very high dimensions, the memory and time con-
sumption can be computationally expensive. On the
other hand, however, searching-based algorithms try
to construct a graph or a tree representation of
the environment by randomly sampling in Cfree.
Therefore they are faster and usually requires less
memory than search-based planning in high di-
mensions. Even though the rigorous completeness
can’t be guaranteed, when the number of iterations
go to ∞, the probability of finding a feasible
path if it exists will approaches 1, which means
that sampling-based algorithms are probabilistically
complete. And accordingly, the asymptotic sub-
optimality bounds on the solution is guaranteed. In
section IV, we give some performance comparison
of both classes of algorithms by showing our ex-
periment results.

IV. EXPERIMENT RESULTS

In section III, we discussed about Weighted A∗

algorithm and RRT algorithm. In this section, we

visualize the path returned by above algorithms in
7 different environments and we give some analysis
on the results and conclude in the end of this
section.

A. Experiment Settings

We have 7 environments of different layouts:
single cube, maze, flappy bird, monza, window,
tower and room. We first evaluate the effectiveness
of our self-implemented Weighted A∗ algorithm and
then evaluate and visualize the performance of RRT
algorithm implemented in rrt-examples library.

Experiment results are as following:

B. Weighted A∗

The optimal path length is rounded to .1f.
1) single cube: Figure 5: Weighted A*: ϵ = 1.0

with 3D Euclidean Heuristic will expande 111
nodes.

Fig. 5. Weighted A*: ϵ = 1.0 with 3D Euclidean Heuristic

Figure 6: Weighted A*: ϵ = 2.0 with 3D Eu-
clidean Heuristic will expand only 11 nodes.

From above comparison, we can show that ϵ is a
trade of between optimality and speed(because there
is no obstacles around goal so the path returned by
real weighted version with ϵ = 2.0 is also optimal).

2) maze: Figure 7: Weighted A*: ϵ = 1.0 with
3D Euclidean Heuristic will expand 8938 nodes.

Figure 8: Weighted A*: ϵ = 2.0 with 3D Eu-
clidean Heuristic will expand 6934 nodes and path
found.



Fig. 6. Weighted A*: ϵ = 2.0 with 3D Euclidean Heuristic

Fig. 7. Weighted A*: ϵ = 1.0 with 3D Euclidean Heuristic

We can see that the weighted A* compared to
A* is faster and expands less nodes.

3) flappy bird: Figure 9: Weighted A*: ϵ = 1.0
with 3D Euclidean Heuristic will expand 3457
nodes.

Figure 10: Weighted A*: ϵ = 3.0 with 3D
Euclidean Heuristic will expand 634 nodes and path
found.

when ϵ = 3.0, weighted A* only expands about
1
6 of the nodes compared to A*.

4) monza: Figure 11: Weighted A*: ϵ = 1.0 with
3D Euclidean Heuristic will expand 3140 nodes.

Figure 12: Weighted A*: ϵ = 3.0 with 3D
Euclidean Heuristic will expand 2473 nodes and

Fig. 8. Weighted A*: ϵ = 2.0 with 3D Euclidean Heuristic

Fig. 9. Weighted A*: ϵ = 1.0 with 3D Euclidean Heuristic

path found.
5) window: Figure 13: Weighted A*: ϵ = 1.0

with 3D Euclidean Heuristic will expand 3978
nodes.

Figure 14: Weighted A*: ϵ = 3.0 with 3D
Euclidean Heuristic will expand 48 nodes and path
found.

6) tower: Figure 15: Weighted A*: ϵ = 1.0 with
3D Euclidean Heuristic will expand 2447 nodes.

Figure 16: Weighted A*: ϵ = 3.0 with 3D
Euclidean Heuristic will expand 311 nodes and path
found.

7) room: Figure 17: Weighted A*: ϵ = 1.0 with
3D Euclidean Heuristic will expand 287 nodes.



Fig. 10. Weighted A*: ϵ = 3.0 with 3D Euclidean Heuristic

Fig. 11. Weighted A*: ϵ = 1.0 with 3D Euclidean Heuristic

Figure 18: Weighted A*: ϵ = 5.0 with 3D
Euclidean Heuristic will expand 77 nodes and path
found.

C. RRT

The optimal path length is rounded to .1f. There
are overall 4 tunable parameters in RRT algorithm
because we always want to find a feasible path
so we fixed the maximum of iteration number to
a very large number 400, 000 to ensure the whole
configuration space will nearly be probabilistically
convered. Then we mainly tuned Q, r and prc, their
meaning is explained in section III-F2

Fig. 12. Weighted A*: ϵ = 3.0 with 3D Euclidean Heuristic

Fig. 13. Weighted A*: ϵ = 1.0 with 3D Euclidean Heuristic

1) single cube: Figure 19: Q=1 r=0.01 prc=0.1
samples 47

Figure 20: Q=1 r=0.01 prc=0.99 samples 7
When there are few obstacles between the start

point and the goal point, we can simpliy just increse
the probability to check whether the goal point can
be directly connected to the tree so that we can find
a path using fewer samples.

2) maze: Figure 21: Q=1 r=0.01 prc=0.1 sam-
ples 11269

Compared to Weighted A*, which report optimal
cost of the path is less than 80m, the RRT find a
feasible path of 116m. But the good thing about
RRT is that it returns the path in less than 20s,



Fig. 14. Weighted A*: ϵ = 3.0 with 3D Euclidean Heuristic

Fig. 15. Weighted A*: ϵ = 1.0 with 3D Euclidean Heuristic

which is so much faster than Weighted A*.
3) bird: Figure 22: Q=1 r=0.01 prc=0.1 samples

536
4) monza: Figure 23: Q=1 r=0.01 prc=0.1 sam-

ples 46670
Figure 24: Q=8 r=0.01 prc=0.1 samples 12699
The performance of RRT is worse than Weighted

A* in all metrics. And larger Q will sample less
even though the found path is longer. This may be
because larger Q helps the tree to expand to wider
area that is not blocked by local obstacles.

5) window: Figure 25: Q=1 r=0.01 prc=0.1 sam-
ples 223

Figure 26: Q=1 r=0.01 prc=0.5 samples 132

Fig. 16. Weighted A*: ϵ = 3.0 with 3D Euclidean Heuristic

Fig. 17. Weighted A*: ϵ = 1.0 with 3D Euclidean Heuristic

Figure 27: Q=1 r=0.01 prc=0.99 samples 329
Figure 28: Q=8 r=0.01 prc=0.1 samples 226
Figure 29: Q=8 r=0.01 prc=0.5 samples 40
Figure 30: Q=8 r=0.01 prc=0.99 samples 17
When there are many obstacles between start

point and goal point, increase the probability of
directly connect to the goal is not that helpful to
find a feasible path.

6) tower: Figure 31: Q=1 r=0.01 prc=0.1 sam-
ples 1377

Figure 32: Q=1 r=0.01 prc=0.5 samples 1639
Figure 33: Q=8 r=0.01 prc=0.1 samples 2002
Figure 34: Q=8 r=0.01 prc=0.5 samples 3470



Fig. 18. Weighted A*: ϵ = 5.0 with 3D Euclidean Heuristic
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Fig. 19. RRT: Q=1 r=0.01 prc=0.1 samples 47

When the obstacles are very dense, we should
use smaller Q and smaller prc and this will help us
find the goal more effiently.

7) room: Figure 35: Q=1 r=0.01 prc=0.1 sam-
ples 194

Figure 36:
Figure 37: Q=8 r=0.01 prc=0.1 samples 1444
Figure 38: Q=8 r=0.01 prc=0.5 samples 2339
The same conclusion as in tower environment.
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Fig. 20. RRT: Q=1 r=0.01 prc=0.99 samples 7
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Fig. 21. RRT: Q=1 r=0.01 prc=0.1 samples 11269
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Fig. 22. RRT: Q=1 r=0.01 prc=0.1 samples 536

D. Part B

In Part B’s setting, the environment is randomly
generated from all 36 possible environments, so we
randomly initiated the slover for several times and
collected the optimal control sequencies along their
according trajectories. And the other observation is
that all the grid size is 8x8 and there are only a
few wall cells in the fixed positions, so the overall
search time is way much longer than in Part A.

E. Results Analysis

From the results, we can see that our experiment
basically align with our description in section III,
where search-based algorithms will provides finite-
time sub-optimality bounds on the solution and
guarantes to find a feasible path if it exists in the 3D
grid environment settings thus they are resolution
complete. And the path given by RRT algorithm
is not much faster than Weighted A* algorithm.
This may be because our configuration space is of
low dimensionality and the advantages of sampling-
based algorithms can not be fully observaed. If we
use wider and scale up our map, maybe at that time
we can see more speed advantage.
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Fig. 23. RRT: Q=1 r=0.01 prc=0.1 samples 46670

F. Conclusions

We performed extensive experiments to compare
the different performance between search-based and
sampling-based algorithms among 7 different envi-
ronments and the results basically align with the
conclusion in technical approach part.
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Fig. 33. RRT: Q=8 r=0.01 prc=0.1 samples 2002
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Fig. 34. RRT: Q=8 r=0.01 prc=0.5 samples 3470
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Fig. 35. RRT: Q=1 r=0.01 prc=0.1 samples 194
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Fig. 36. RRT: Q=1 r=0.01 prc=0.5 samples 204
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Fig. 37. RRT: Q=8 r=0.01 prc=0.1 samples 1444
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APPENDIX

Before finding the bug of our collision checker,
A∗ will generate paths that are not collision free in
the following 3 environments:

• flappy bird
• monza
• room

And later we found what is wrong with our checker
by examining the flappy bird environment and
found a good test case: testing whether line(start
point: [3.0, 2.5, 2.5 ], end point: [3.5, 2.5, 2.0]) will
collide with the left plane of the first red obstacle
block box(we added some colors to the blocks

https://github.com/motion-planning/rrt-algorithms
https://github.com/motion-planning/rrt-algorithms
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/


for debugging and better visualization). This line
indeed collides with the plane but our checker won’t
detect this. We found this is because the distance
sign of the plane to the origin is incorrect. When the
left plane is perpendicular to the bottom plane of the
boundary and the x-axis offset is greater than 0, the
distance sign of the plane should be negative instead
of positive because the origin is located in the half-
plane specified by the opposite direction of the left
plane’s normal vertor n. After such modification,
we found a collision free path in flappy bird, but
a new problem occured: A∗ can’t find a collision
free path for window now. And we later found that
this is because we set the resolution too small, after
changing it to 0.5, we were able to generate optimal
feasible path for all the environments.
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