
2D Grid Trajectory Tracking in a Nutshell:
CEC and GPI Approaches

Zhuoqun Chen
Dept. Electrical and Computer Engineering

UC San Diego
La Jolla, USA

zhc057@ucsd.edu

Abstract—This report focuses on solving a reference
trajectory tracking problem on 2D grid with obstacles.
By formulating the problem into an infinite-horizon
stochastic optimal control problem, we solved it with
two suboptimal schemes: Receding-horizon Certainty
Equivalent Control (CEC) and Generalized Policy
Iteration (GPI). CEC approximates the problem by
repeatedly formulating a finite-horizon Determinis-
tic Optimal Control Problem (DOC) by fixing the
noise at its expected value and solve it with Non-
Linear Program (NLP) solvers like CasADi. GPI,
however, solves the original problem by discretizing
the continuous state and control spaces and designing
a large state transition lookup table. Both schemes
give promising results with small overall tracking
errors in our experiments where reference motion is
selected as a Lissajous Curve partially blocked by two
circular obstacles. We then analyzed and compared
the performance of these two methods in terms of
computational complexity and total tracking errror.

Index Terms—Trajectory Tracking, Infinite-horizon
Stochastic Optimal Control, Receding-horizon Cer-
tainty Equivalent Control (CEC), Generalized Policy
Iteration (GPI)

I. INTRODUCTION

Trajectory Tracking is a fundamental problem
in control systems where the goal is to control a
robot to follow a desired trajectory or path. This
problem arises in various fields such as robotics,
autonomous vehicles, and aerospace systems. To
tackle trajectory tracking problems, researchers
have developed a variety of control algorithms, two
of which are Receding-Horizon Certainty Equiva-
lent Control (CEC) and Generalized Policy Iteration
(GPI). In general, both algorithms will offer effec-
tive solutions and the choice of which algorithm to

be deployed in real-world applications depends on
the underlying model of the dynamic systems, the
type of spefic tasks, computational resources, and
the level of uncertainty in the system dynamics. The
effectiveness of both algorithms can be validated in
some simplified tasks, for example, in Figure 1, we
can model the uncertainty in a 2D grid environment
as random Gaussian Noise with zero mean and
covariance N

(
0,diag(σ)2

)
and let a differential-

drive robot to track a Lissajous curve by using these
algorithms.

In this report, we mainly focus on implement-
ing CEC and GPI algorithms in a 2D reference
trajectory tracking task described in Figure 1 and
comparing their performance on various metrics.
The organization of this report is as following:
We formulate the trajectory tracking problem in
Section II, then we present the implementation
details in Section III, then we did experiments to
show the effect of different hyper-parameters on our
implemented algorithms in Section IV. At the end
of the report, we also documented some experiment
debugging logs while finishing this project.

II. PROBLEM FORMULATION

Consider a 2D differential-drive robot with
discrete-time Kinematic model in Euler discretiza-

Fig. 1. Trajectory Following Task Example: The goal is to
compute a control policy for a differential-drive robot (red
triangle) to track a 2D reference trajectory (pink crosses). The
trajectory is a periodic Lissajous curve. There are two circular
obstacles (red circles) that partially block the reference trajectory
thus the control policy will also need to be designed to avoid
them.

tion form with time step ∆ > 0:

xt+1 =

[
pt+1

θt+1

]

=

[
pt

θt

]
︸ ︷︷ ︸

xt

+∆

 cos (θt) 0
sin (θt) 0

0 1

︸ ︷︷ ︸

G(xt)

[
vt
ωt

]
︸ ︷︷ ︸

ut

+wt

(1)
where wt ∈ R3 models the motion noise with
Gaussian distribution N

(
0,diag(σ)2

)
with stan-

dard deviation σ = [0.04, 0.04, 0.004] ∈ R3. The
robot is constrained to move inside a bounded
configuration space C = [−3, 3]2 with two circular
obstacles C1 and C2 with radius 0.5 centered at
O1 = (−2,−2) and O2 = (1, 2) respectively.
Thus the actual free space the robot can move is
F := C\ (C1 ∪ C2). The control input ut = [vt, ωt]
of the vehicle is also bounded inside control space
U := [0, 1]× [−1, 1], where vt and ωt are the linear
and angular velocities respectively.

The reference trajectory to be followed is selected
as a periodic Lissajous curve. The curve can be
parameterized as a sequence of position trajectory
rt ∈ R2 and orientation trajectory αt ∈ [−π, π).
The trajectory is partially blocked by obstacle C1
and is very close to C2. Because we mainly focus
on how to reduce the gap between the computed
path with reference path at each time step, it is
convenient to define the error state et :=

(
p̃t, θ̃t

)
,

where p̃t := pt − rt and θ̃t := θt − αt measure
the position and orientation deviation from the
reference trajectory, and formulate an error state
transition function as:

et+1 =

[
p̃t+1

θ̃t+1

]
= g (t, et,ut,wt)

=

[
p̃t

θ̃t

]
︸ ︷︷ ︸

et

+

∆cos

(
θ̃t + αt

)
0

∆ sin
(
θ̃t + αt

)
0

0 ∆

︸ ︷︷ ︸

G̃(et)

[
vt
ωt

]
︸ ︷︷ ︸

ut

+

[
rt − rt+1

αt − αt+1

]
+wt

(2)

We then formulate the trajectory tracking with ini-
tial time τ and initial tracking error e as a dis-
counted infinite-horizon stochastic optimal control
problem:

V ∗(τ, e) = min
π

E

[∞∑
t=τ

γt−τ
(
p̃⊤
t Qp̃t

+ q
(
1− cos

(
θ̃t

))2

+ u⊤
t Rut) | eτ = e]

s.t. et+1 = g (t, et,ut,wt) ,

ut = π (t, et) ∈ U
p̃t + rt ∈ F

(3)

where Q ∈ R2×2 in eq. (2) is a symmetric positive-
definite matrix defining the stage cost for deviating
from the reference position trajectory rt, q > 0 is
a scalar defining the stage cost for deviating from
the reference orientation trajectory αt, R ∈ R2×2

is a symmetric positive-definite matrix defining the

stage cost for using excessive control effort, and
wt ∼ N

(
0,diag(σ)2

)
, t = τ, τ + 1, . . . is the

Gaussian noise the same as in eq. (1).
To solve this infinite-horizon stochastic optimal

control problem, CEC and GPI algorithms can be
applied by adopting different strategies and ap-
proximations at different levels. More details are
presented at Section III. In later sections, we fo-
cus more on the specific approaches to solve the
above trajectory tracking problem with different
algorithms.

III. TECHNICAL APPROACH

In this section, we discuss two specific methods
developed that can be used to solve eq. (3).

A. Receding-horizon Certainty Equivalent Control
(CEC)

The original formulation eq. (3) modeled the
uncertainty in the system as a stochastic process.
However, Receding-horizon Certainty Equivalent
Control (CEC) scheme uses a simple idea, i.e.,
to treat it to be a fixed value of expectation by
reformulating the equation to be:

V ∗(τ, e) ≈ min
uτ ,...,uτ+T−1

q (eτ+T) +

τ+T−1∑
t=τ

γt−τ

(
p̃⊤
t Qp̃t + q

(
1− cos

(
θ̃t

))2

+ u⊤
t Rut

)
s.t. et+1 = g (t, et,ut,0) , t = τ, . . . , τ + T − 1

ut ∈ U
p̃t + rt ∈ F

(4)
In eq. (4), the error state at the next time step

is always determined by fixing the noise term at
its mean value, in our settings, the mean of the
gaussian noise is set to be 0. We can also notice
that at each time step, the formulation approximates
an infinite-horizon problem to a discounted finite-
horizon deterministic optimal control (DOC) prob-
lem with continous state space and control space
and time horizon T . T is a hyper-parameter we
tune to get better performance in our task. This
new formulation is easier to solve with a non-linear
program (NLP) solver like CasADi[1]. The pipeline
is thus designed as a repeated reformulate-take one
step further-reformulate process. We can view this
process as a dynamic online strategy, the reason
why we only take one step is because we somehow
ignored the stachatic nature of the noise, thus to

get overall smaller accumulated error, we need to
reformulate the problem when we get to the new
state and evaluate and replan the control policy.

To solve eq. (4) at each time step, we rewrite it
as a more compact non-linear program form:

minU c(U,E)
s.t. Ulb ≤ U ≤ Uub

hlb ≤ h(U,E) ≤ hub

(5)

where U :=
[
u⊤
τ , . . . ,u

⊤
τ+T−1

]⊤
and E :=[

e⊤τ , . . . , e
⊤
τ+T

]⊤
are vectorized control sequence

and error state sequence. In our settings, the con-
strains in eq. (5), explicitly parametrized as control
in-bounds constraint, robot position in-bounds con-
straint, error state transition constraint, collision
avoidance constrain, along with the cost function,
are forwarded to a CasADi NLP solver to get a
numeric solution of U and E.

1) Online Numeric Solution with NLP Solver:
As the final NLP form is formulated as eq. (5) for
each time step, we can repeatedly parameterize it
and feed to a CasADi solver to get numeric solution
on the fly. The optimization objective c(U,E) can
be expressed as

c(U, E)=q(eτ+T) +
∑t+T−1

t=τ

(
p̃Tt Qp̃t + q

(
1− cos θ̃t

)2

+ uT
t Rut

)
(6)

For simplicity, we designed Q and R as:

Q = Qdiag

[
1 0
0 1

]
(7)

and

R = Rdiag

[
1 0
0 1

]
(8)

where Qdiag and Rdiag in eq. (7) and eq. (8) are
both scalar served as hyper-parameters.

2) control in-bounds constraint: this constraint
states that each control input element u in U =[
u⊤
τ , . . . ,u

⊤
τ+T−1

]⊤
, can’t exceed the minimum

and maximum bounds Ulb = [vmin, wmin]
T and

Uub = [vmax, wmax]
T within time-horizon T ,

where vmin = 0, wmin = −1 and vmax =
1, wmax = 1.

3) robot position in-bounds constraint: this con-
straint states that at any time, the robot’s position
xt = p̃t+rt can’t exceed the boundaries of the 2D
grid: [

−3
−3

]
≤ p̃t + rt ≤

[
3
3

]
(9)

4) error state transition constraint: this con-
straint corresponds to the error state transition func-
tion in eq. (4) with time step ∆ = 0.5:

et+1 = g (t, et,ut,0) , t = τ, . . . , τ+T−1 (10)

we need to pay attention that this constraint holds
for all the time step within T , thus there are T
number of constraint when forwarding to the solver.

5) collision avoidance constrain: this constraint
corresponds the defination of free space F :=
C\ (C1 ∪ C2) in our settings. To make the generated
path safer, we also specified a hyper-parameter
safety margin to shrink the F a little bit away from
the boundaries of the obstacles:

∥p̃t + rt −Oi∥2 ≥ radius + safety margin (11)

where Oi, i = 1, 2 are the center position vector
of two circular obstacles, radius = 0.5 and we set
the safety margin = 0.05.

With the above defined objective and constrains
at each time step, the NLP solver will give us a
numerical solution of U =

[
u⊤
τ , . . . ,u

⊤
τ+T−1

]⊤
.

We then retrieve uτ as the optimal control in-
put for current robot state and execute it once
with car_next_state, which is the Kinematics
model of the robot state and get to the next state
and repeat this process until the end of simulation
time. Ideally, without the presence of the gaussian
noise incoorporated in the robot state transition
model, the tracking results can be perfectly smooth
in visualization, we will discuss more details about
experiment results in Section IV.

B. Generalized Policy Iteration (GPI)

Unlike the CEC scheme which constantly refor-
mulates a new finite-horizon deterministic control
problem at each time step, Generalized Policy It-
eration (GPI) scheme solves the original eq. (3)
directly but need to discretize the state and control
spaces into finite collections in a tabular manner.

The idea behind this is pretty simple: since we can
directly access the underlying environment model,
maintaining a state transition lookup table in an
offline manner is available. Generally, GPI com-
bines elements of both policy evaluation and policy
improvement in an iterative process. It learns an
approximation of the optimal control policy by it-
eratively updating the value function and the policy.
This iterative process continues until the policy
converges to an optimal or near-optimal solution.

C. State and Control Spaces Discretization

Although the problem itself has infinite-horizon,
but the state we designed need to be parameterized
with time dimention. The main reason behind this
because the reference trajectory we need to follow
is already known and periodic and with period
nt = 100 so this is necessary. For simplicity, we in-
terpolate the notation here and denote the disretized
finite state xi as a tuple with four elements:

xi = (st, sx, sy, sa) (12)

Natually, because the period of reference trajectory
is nt = 100, st should be ranged from 0 to 50
descretized by time step 0.5. In eq. (12), the latter
3 elements of the state tuple can be also viewed
as a discretization verison of the error state ei =
(sx, sy, sa) as defined in eq. (2).

1) Adaptive Finer-coarser Resolution for State
Space: In practice, we didn’t discretize the latter
3 dimensions using the same resolution evenly.
Instead, we followed the adaptive discretization
of ei with a finer grid closer to the reference
trajectory and a coarser grid further away. The
main reason for this is maintaining the same small
and even resolution along each dimension is so
expensive in both computation and memory con-
sumption. For example, the bounds for both sx
and sy are [−3, 3], if we evenly divide them to
10 elements and evenly divide sa every 15 degree
(360/15 = 24), then the cardinality of the state
space |X | = 100× 10× 10× 24 = 240000, which
is too computationally entensive to process during
value iteration or policy iteration. Our method is
based on such observation that when the error of
potential current state xi deviates the corresponding

reference state xref too much, the policy made for
that state is of less importance and some standard
control strategy will be discovered eventually for
such target lost situation. So in practice, we de-
scretize sx, sy , and sa into 3 levels and 9 values
in total, respectively. For sx and sy , the finest-level
resolution is the evenly distance from −0.25 to 0.25
divided into 5 parts; the middle-level is descretized
to ±0.5; and the coarsest-level, ±3.0. Similarly
for sa (descretized error of orientation angle), the
finest-level resolution is the evenly distance from
−π/4 to π/4 divided into 5 parts; the middle-level
is descretized to ±π/2; and the coarsest-level, ±π.

2) Even Resolution for Control Space: For
control space, we use even resolution within
[vmin, vmax], and [ωmin, ωmax] with resv = 0.1 and
resω = 0.2:

vi ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
(13)

and

wi ∈{−0.2,−0.4,−0.6,−0.8,−1.0, 0.0,
0.2, 0.4, 0.6, 0.8, 1.0}

(14)

3) State and Control Space Candinality: Sec-
tion III-C1 and Section III-C2 discussed our design
for the descritization strategy, we can calculate
the corresponding state space and control space
cardinality to further assist the design for transition
function:

|X | = 100× 9× 9× 9 = 72900

|U| = 11× 11 = 121
(15)

D. Transition Function Design

Since we no longer model the Gaussian noise
as fixed values as in CEC method, we now need
to analyze the distribution pf (·|xi,ui) of the next
state. For simplicity, we separate xi into 2 parts:
st and ei = (sx, sy, sa). The transition of st is
relatively easier to analyze:

sj = ∆ ∗ ((si/∆+ 1) mod 100) (16)

This is because the periodicity nature of the refer-
ence motion, once the reference trajectory goes to
the last point along the path, the next referenced
point will the original point 100 steps before. The

transition of ei is actually the descretized version of
eq. (2) with stochastic noise considered. For a given
discretized error state e and control u, The next
discretized error state e′ should also be a Gaussian
random variable with mean and covariance:

e′ ∼ N (g(t, e,u,0),diag(σ2)) (17)

This process can be visualized as in Figure 2
where the next error state e′ can be at some random
candidate locations around its mean value.

After we evaluate the mean for the final transition
after plugging into the input discretized error state
and control input, we select and pick the top-4
nearest candidate states e′1, e

′
2, e

′
3, e

′
4 by comparing

the absolute difference alone each dimension and
then evaluate the probability density function (pdf)
at these states p(e′1), p(e

′
2), p(e

′
3), p(e

′
4). These val-

ues are then normalized by dividing by the sum
of these values, and selected as the new transition
probabilities corresponding the next 4 new candi-
date states under specific discretized error state and
control input at current iteration. And for the states
not among the top-4 candidates, we simplity init
the transition probability to them as 0. For each
input state and control, the output will be of the
new states of the same number of the state space
along with corresponding possibilities. But most of
the elements in the output will be 0 thus resulting a
super large sparse matrix and we used this nature to
store such transitions to be more memory-efficient.
More specificly, the output transition will be of the
scale |X | × |U| × |X |.

E. Stage Cost Design

The stage costs between transitions are basicly
the same as each single term of the stage costs
defined in eq. (3) with addition cost to penalize the
entering the collision area:

l (x, u) = p̃TQp̃+ q
(
1− cos θ̃t

)2

+ uTRu+ costcollision

(18)

Fig. 2. An illustration of the discretized transition possibilities
that is sampled from its distribution that is used in GPI scheme
to solve the reference trajectory tracking problem

where we use fixed scalar cost for collision avoid-
ance:

costcol :=

{
kcol ∥p̃t + rt −Oi∥2 < rad + mar

0 ∥p̃t + rt −Oi∥2 ≥ rad + mar
(19)

where kcol is a hyper-parameter that can be tuned.
After all the preparation of getting a discretized

MDP is done, we now present our Generalized
Policy Iteration algorithm that operates on it as
Algorithm 1:

Algorithm 1 Generalized Policy Iteration (GPI)
Input: discretized MDP with X , U , transitions P ,

stage costs L, discounted factor γ
Output: near-optimal policy π

1: V0 ← 0, policy evaluation iter set to n = 1
2: for k = 0, 1, 2, · · · do
3: Q← L+ γPVk

4: Vk+1 ← minu∈U Q
5: π ← argminu∈U Q
6: if ∥Vk+1 − Vk∥2 ≤ terminal condition then
7: return π
8: end if
9: end for

10: return near-optimal policy π

In our practice, Algorithm 1 usually will conver-
age to less or equal than 1e − 4 in a couple of
hundreds of iterations. After we get a converged

policy function, we can use it to query the control
strategy iteratively.

IV. EXPERIMENT RESULTS

In section III, we discussed about CEC algorithm
and GPI algorithm. In this section, we visualize
the followed path returned by above algorithms
with different hyper-parameters and we give some
analysis on the results and conclude in the end of
this section.

A. Experiment Settings

We have a reference trajectory to track with
period T = 100. We simulate the processing to be
60 seconds.

We first evaluate the effectiveness of both CEC
algorithm and GPI algorithm to solve this trajectory
tracking problem. We then compared and visualized
the followed path performance of both algorithms
to get some intuitions.

In practice of implementing GPI algorithm, be-
cause to get a full state transition lookup table is
too time-consuming, which in general, will took
about 50 to 60 minutes, thus we first run the files
to generate the transitions first and save them as
pickle files in the form of sparse matrix objects.
Then when we need to compute policies for specific
hyper-parameter sets, we will load them manually
and save the policy with the settings together to be
used as the backend database to be queried while
doing the tracking task.

Experiment results are as following:

B. CEC Algorithm

The overall tracking error is rounded to .2f.
1) Without the Presence of Random Noise:

Ideally, when the environment has no noise at all,
the original trajectory tracking problem will be
reduced to a infinite-horizon Deterministic Optimal
Control Problem, in this case, CEC algorithm can
achieve even higher tracking accuracy, after tuning
and selecting one of the hyper-parameter set as
Qdiag = 5, q = 5, Rdiag = 2, T = 15 with safety
margin set to 0.005, we have nearly perfectly fol-
lowed path with overall error 2209.77, the average
iteration time is about 40.6ms and the visualization
can be seen in Figure 3.

Fig. 3. CEC without environment noise can have nearly perfect
tracking result

2) With the Presence of Random Noise: With the
same set of parameters as Section IV-B1, we add
the environment noise into it and get the following
visualization result as in Figure 4. We can see that
the tracking error is now 2298.68 and the deviation
is even larger and the followed path is not that
smooth as previous results.

3) The Role of Terminal Cost in CEC: The
terminal cost in CEC formulation can be viewed as
some kind of approximation of the infinite-horizon
discounted sum of stage cost. It can not perfectly
modeled, but it’s better to add this term.

4) Increasing Q Results Smaller Position Track-
ing Error: As we can see in Figure 5, keeping
other parameters still, and increasing Q results in
smaller position tracking error because essentially
this parameter is larger, the more the controller
will try to follow more and reduce the gap on the
positional with reference motion.

5) Increasing q Results Smaller Orientation
Tracking Error: As we can see in Figure 6, keeping
other parameters still, and increasing Q results in
smaller position tracking error because essentially
this parameter is larger, the more the controller

Fig. 4. CEC with environment noise deviates the reference
trajectory

Fig. 5. CEC Q is 10

will try to follow more and reduce the gap on the
orientation with reference motion.

Fig. 6. CEC q is 10

6) Increasing R Results smaller Tracking Ra-
dius: As we can see in Figure 7, keeping other
parameters still, and increasing R results in smaller
followed path using smaller tracking radius because
essentially this parameter is larger, the more the
controller will try to use smaller force and velocities
to track the trajectory.

7) CEC Computation Efficiency: Generally,
CEC is a online planner and it can have relative
good online planning performace, especially when
the environment is changing fast and plan is happ-
ning at a high frequency. And on time it consumes
is about 50ms average, which is enough for basic
control.

C. GPI Algorithm

1) GPI Trajectory is not smooth compared to
CEC: In generall, for example, in Figure 8, GPI
followed path is not that smooth compared to CEC
scheme.

2) GPI Trajectory is not smooth compared to
CEC: In generall, for example, in Figure 8, GPI
followed path is not that smooth compared to CEC
scheme.

Fig. 7. CEC R is 50

3) GPI Trajectory sometimes can’t avoid obsta-
cle: For example, in Figure 8, GPI followed path
can’t prevent the obstacles.

4) GPI Spent most of the computation time of-
fline thus online faster: Compaerd to CEC, GPI
can have online speed 2.6ms, but most of the
computation is done offline(1h even).

D. Comparison with CEC and GPI Algorithms

CEC is a model-based control approach that
solves trajectory tracking problems by predicting
the future behavior of the system over a finite time
horizon and optimizing the control inputs accord-
ingly. CEC assumes that the system dynamics are
known and employs a certainty equivalent approach,
where the uncertain parameters of the system are
replaced with their nominal values. By solving an
optimization problem at each time step, CEC de-
termines the optimal control sequence for the given
time horizon, and only the first control action is
implemented. This process is repeated at each time
step, leading to a receding-horizon control strategy.

On the other hand, Generalized Policy Iteration
(GPI) is an offline planner that combines elements
of both policy evaluation and policy improvement in
an iterative process. It learns an approximation of

Fig. 8. GPI Q=75 q=30 R=1

the optimal control policy by iteratively updating
the value function and the policy. By interacting
with the system and collecting data, GPI improves
the control policy based on the observed costs
and states. This iterative process continues until
the policy converges to an optimal or near-optimal
solution. The computational consumption for this
scenario can be extensive, for our 2D task with
many state and control space to discretize.

For most

E. Conclusions

We performed extensive experiments to compare
the different performance between CEC and GPI
algorithms with different hyper-parameter sets and
the results basically align with the conclusion in
technical approach part.

ACKNOWLEDGMENT

Thanks Prof. Nicolay for such meaningful lec-
tures and the commitment of TA Zhirui Dai.

REFERENCES

[1] Casadi. [Online]. Available: https : / / web .
casadi.org/.

APPENDIX

https://web.casadi.org/
https://web.casadi.org/

	Introduction
	Problem Formulation
	Technical Approach
	Receding-horizon Certainty Equivalent Control (CEC)
	Online Numeric Solution with NLP Solver
	control in-bounds constraint
	robot position in-bounds constraint
	error state transition constraint
	collision avoidance constrain

	Generalized Policy Iteration (GPI)
	State and Control Spaces Discretization
	Adaptive Finer-coarser Resolution for State Space
	Even Resolution for Control Space
	State and Control Space Candinality

	Transition Function Design
	Stage Cost Design

	Experiment Results
	Experiment Settings
	CEC Algorithm
	Without the Presence of Random Noise
	With the Presence of Random Noise
	The Role of Terminal Cost in CEC
	Increasing Q Results Smaller Position Tracking Error
	Increasing q Results Smaller Orientation Tracking Error
	Increasing R Results smaller Tracking Radius
	CEC Computation Efficiency

	GPI Algorithm
	GPI Trajectory is not smooth compared to CEC
	GPI Trajectory is not smooth compared to CEC
	GPI Trajectory sometimes can't avoid obstacle
	GPI Spent most of the computation time offline thus online faster

	Comparison with CEC and GPI Algorithms
	Conclusions

	Appendix

